Limiting Future Proliferation and Security Risks

Presented to:

Reactor and Fuel Cycle Technologies Subcommittee
Blue Ribbon Commission on America's Nuclear Future

Robert Bari

October 12, 2010

a passion for discovery

Comparison/Distinctions

Proliferation Resistance

- Host state is adversary
- Threats are
 - Diversion
 - Misuse
 - Breakout
- International Safeguards
- Slow moving events (not always)
- International implications

Physical Protection

- Sub-national is adversary
- Threats are
 - Material Theft
 - Information Theft
 - Sabotage
- Security/Safeguards
- Fast moving events (sometimes)
- Regional implications

Science-Based Approach to Proliferation Resistance and Physical Protection (PR&PP)

CHALLENGES --> SYSTEM RESPONSE --> OUTCOMES

PR & PP

Threats

Intrinsic

Physical & technical

design features

Extrinsic

Institutional arrangements

PR

- Diversion
- Misuse
- Breakout
- Clandestine Facility

PP

- Theft
- Sabotage

Assessment

Measures

- Material Type
- Detection Probability
- Technical Difficulty
- Proliferation Time
- Proliferation Cost
- Safeguards Cost
- Adversary Success Probability & Consequence
- Security Cost

Methodology Report approved for unlimited public distribution by the Generation IV International Forum: http://www.gen-4.org/Technology/horizontal/PRPPEM.pdf

Threat Considerations

	Proliferation Resistance	Physical Protection
Actor Type	Host State	Outsider
		Outsider with insider
		Insider alone
		 Above and non-Host State
Actor	Technical skills	Knowledge
Capabilities	 Resources (money and workforce) 	• Skills
	Uranium and Thorium resources	 Weapons and tools
	 Industrial capabilities 	 Number of actors
	Nuclear capabilities	Dedication
Objectives	Nuclear weapon(s):	 Disruption of operations
(relevant to	Number	 Radiological release
the nuclear	Reliability	 Nuclear explosives
fuel cycle)	Ability to stockpile	 Radiation Dispersal Device
	Deliverability	 Information theft
	Production rate	
Strategies	Concealed diversion	 Various modes of attack
	Overt diversion	 Various tactics
	Concealed facility misuse	
	Overt facility misuse	
	 Independent clandestine facility use 	

Evaluations should consider...

- Policy directions (to formulate questions)
- Adversary context for threat definition
 - Objectives
 - Capabilities
 - Strategies
- System design features relevant to PR&PP
- Fuel cycle architecture
- Safeguards and security contexts
- Reference (baseline) for comparison
- 3 Stages for Evaluation: Acquisition, Processing, Weaponization (not usually evaluated)
- Proliferation, theft and sabotage involve <u>competing</u> adversary and defender forces. Important to recognize both perspectives and the human interplay.

Studies Performed*

- ESFR: Example Sodium Fast Reactor w/fuel cycle
- PRR-1: UREX1a, COEX, PUREX
- PRR-2: UREX suite, COEX, Pyro, PUREX
- PRR-3: SFR, VHTR, CANDU, ALWR
- SMR: Integral PWR, Barge Reactor

*ESFR performed by international group; others by U.S. participants for NNSA

Observations from Evaluation Process

- Multiple pathways/scenarios highlight fact there are no simple answers to the relative PR&PP advantages of different processes
- Even a qualitative analysis is useful for informing decision-makers on "big picture"— e.g., for which threat scenarios do particular process characteristics make a difference, and how, and where do they not.
- Useful framework for integrating key findings and insights from multiple, more narrowly focused, technical studies

The Policy-Technology Nexus

- Policy informs the statement of the questions to be addressed
- Technical evaluations are performed to provide clear statements of alternatives (indicating and displaying degrees of differentiation)
- Policy is then used again to help choose among the alternatives defined in the results

<u>Do not</u> infuse technical evaluation portion with subjective notions from policy

Questions and Issues That Future Studies Can Inform

- Relative advantages of alternative nuclear energy systems for various applications: energy generation, material production, waste treatment
- System architecture (e.g. once-through vs. closed fuel cycles)
- International arrangements (e.g. fuel leasing)
- Performance-Environment-Economics-Nonproliferation-Security-Safety Trade-offs
- Many stakeholders...information needs to be presented to each user in an understandable way

